多步相移中被测件径向相移不均匀 引入误差比较及校正

高芬^{1,2},倪晋平¹,李兵²,田爱玲¹

1西安工业大学光电工程学院,陕西西安 710032;

2西安交通大学机械制造系统工程国家重点实验室,陕西西安710049

摘要 不同步数相移算法下被测件径向相移不均匀引入的误差不同,对测量的影响也将不同。基于点衍射干涉测量光路,构建了误差分析模型,以5、6、7和13步相移算法为例,对不同相移算法下被测件径向相移不均匀引入的 移相误差进行了分析,并将该移相误差的影响引入到实际干涉测量模型中,进一步分析比较了该误差对最终面形 检测结果的影响,进而提出了一种基于误差预估计的多项式误差校正新方法。研究结果表明,相移算法步数越多, 被测件径向相移不均匀引入的面形检测误差越大,误差均呈类抛物面分布;最终面形检测结果经 Zernike 多项式拟 合消离焦项后已等同于进行了二次多项式校正,对于数值孔径为0.3以下的被测件,经二次多项式校正后该误差对 测量的影响基本可以忽略。

Comparison and Correction of Errors Caused by Radial Phase-Shifting Nonuniformity of Test Optics in Multi-Step Phase-Shifting

Gao Fen^{1,2}, Ni Jinping¹, Li Bing², Tian Ailing¹

¹ School of Optoelectronic Engineering, Xi'an Technological University, Xi'an, Shaanxi 710032, China; ² State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China

Abstract Errors caused by radial phase-shifting nonuniformity of test optics are different when using different steps of phase-shifting algorithms to process interference fringes. Here, a error analysis model is established based on optical principle of point diffraction interferometery. Take 5, 6, 7 and 13 step phase-shifting algorithms as example, phase-shifting errors which are directly caused by radial phase-shifting nonuniformity are first analyzed, and then be introduced into the interferometry model. The influence of this phase-shifting error to final optical surface testing results are analyzed later and a new polynomial error correction method based on error preestimate is proposed. The analysis results show that the more the phase-shifting steps are, the larger the figure error caused by radial phase-shifting nonuniformity is. Each of these figure error shows a paraboloid like distribution. Also, removing the defocus item from Zernike polynomial of final optical surface testing results is equal to have had a quadratic polynomial correction of this error. If the numerical aperture of test optics are no more than 0.3, the error caused by radial phase-shifting nonuniformity can be ignored after the quadratic polynomial correction.

Key words measurement; interferometry; point diffraction interferometer; multi-step phase-shifting; radial phase-shifting nonuniformity; error analysis

OCIS codes 120.3180; 050.1940; 050.5080; 120.6650

E-mail: gaofen8128@163.com

收稿日期: 2017-10-03; 收到修改稿日期: 2017-11-08

基金项目:国家自然科学基金(51275398)、陕西省科学技术研究发展计划(2014K05-4)

作者简介:高芬(1980-),女,博士,副教授,硕士生导师,主要从事精密光学检测技术方面的研究。

1引言

球面和非球面光学元件在极紫外光刻、激光核 聚变等高技术领域中获得了越来越广泛的应用,人 们对该类元件的面形也提出了纳米甚至亚纳米级的 超精检测需求[1]。目前国内对于球面、非球面面形 的高精度检测多依赖于商业化的菲索和泰曼格林型 干涉仪,这类传统干涉仪受其自身标准镜头面形精 度的限制,检测精度多数只能达到峰谷(PV)误差约 几十纳米($\lambda/10\sim\lambda/20$, $\lambda=632.8$ nm)的水平,已无 法满足上述超精检测发展需求。相移点衍射干涉测 量法^[1-5](PSPDI)为超精面形检测开辟了新途径,该 方法通过微米尺寸小孔衍射产生近似理想的球面波 作为参考面,理论上可达到亚纳米级检测精度[6~8]。 PSPDI系统常通过压电陶瓷相移器(PZT)带动被测 件移动引入相移。当 PZT 带动被测件沿轴向移动 时,必然会使得由被测件反射回的光束的汇聚点相 对初始位置发生偏离,导致沿被测件径向各高度上 引入的相移量不同,即整个视场内相移不均匀,后续 采用不同步数的相移算法进行相位提取时,该径向 相移不均匀对测量结果的影响将不同。目前高精 度的商业化于涉仪上广泛采用5步以上的多步相 移算法进行相位提取,为达到点衍射所述亚纳米 级超精面形检测需求,实际点衍射系统构建前必 需对5步以上多步相移算法下该项误差的影响进 行准确的评估,以便选取满足精度需求的最合适 相移算法,并尽可能地减小或消除该项误差对测 量结果的影响。

目前国内外学者针对被测件径向相移不均匀引 入误差的分析及校正已开展了一些研究[9-11]。有关 菲索型球面干涉仪中大数值孔径(NA)被测件的检 测,Creath 等^[9]较早提出将球面参考面改为平面参 考面的方法,即通过 PZT 带动位于准直光路的平面 参考镜的移动来代替原来 PZT 带动球面参考镜头 的移动,使得相移过程中整个视场内的相移量不发 生变化,从而完全消除了径向相移不均匀性的影响; 该方法不适用于 PZT 带动被测件作相移的光路。 Moore 等^[10]提出每步移相不以轴上点为基准,而是 选取一个能使轴上点的光程和最边缘光线的光程差 相等的变化的相移值代替原定相移量的方法来减小 相移不均匀性的影响;该方法对不同数值孔径的被 测件必须事先计算出每步的相移量,再通过计算机 控制 PZT 按预定值精确相移,实际操作过程复杂。 黄深旺等[11]对菲索型球面干涉仪中被测件径向相 移不均匀引入的移相误差进行了理论推导和计算, 并基于相移算法公式近似推导了3步和5步算法引 起的波面复原误差。目前尚未有针对5步以上相移 算法中被测件径向相移不均匀引入误差的综合性比 较分析,所引入误差的特性及对最终面形检测结果 的影响未知。

本文基于被测件作相移的小孔点衍射干涉测量 光路,以5、6、7和13步相移算法为例,通过将被测 件径向相移不均匀引入的移相误差引入到相移干涉 图像光强分布模型中,仿真相移干涉测量过程并复 原被测面形的方法,直观获得了该误差对最终面形 检测结果的影响,进一步分析了误差特性及其实质, 提出了一种基于误差预估计的误差校正新方法。拟 通过本研究为不同步数算法下被测件径向相移不均 匀引入误差的评估及校正提供可靠的参考数据及有 效的分析手段。

2 PSPDI 检测原理

PSPDI 是利用微米尺寸小孔衍射产生近似理 想的衍射球面波作为参考面代替原有球面干涉仪中 的标准实物镜头,无需标准镜头即组成超高精度的 干涉测量系统,理论上可达到亚纳米级检测精度。 PSPDI 检测原理^[1,4]如图 1 所示。He-Ne 激光汇聚 光束经微米尺寸小孔后发生衍射,小孔衍射产生的 标准球面波被均分成两部分,一部分作为测试光 W₁,另一部分作为参考光 W₂。测试光 W₁ 经被测 表面反射回的光束 W[']₁再经小孔衍射基板表面反射 后,出射的光束 W[']₁与参考光 W₂ 进行干涉,在电荷 耦合器件(CCD)上形成大小合适且清晰的干涉条 纹。通过 PZT 带动被测件沿轴向移动,获得多幅相 移干涉条纹图,再经多步相移算法进行相位提取,并 经解包、拟合等系列相移干涉图像处理过程后即可

Fig. 1 Principle of PSPDI

获得被测表面面形信息,并计算出 PV 误差和均方根(RMS)误差。

为满足 PSPDI 中纳米甚至亚纳米的超精检测 要求,实际系统中常采用 5 步以上误差敏感度较低 的多步相移算法。目前 Schmit 等^[12]基于扩展平均 法提出的 A 类和 B 类的 5~13 步相移算法在国外 高精度的商业化干涉仪上得以广泛应用,本课题组 在文献[13]中也已详细推导并给出了 A 类和 B 类 的5~13 步相移算法的具体公式。研究将直接引用 文献[13]中各多步相移算法公式,并以 5A、6A、7A、 13A 和 5B、6B、7B 和 13B 为例,仿真比较用不同相 移算法进行相位提取时被测件径向相移不均匀对测 量的影响。

3 误差理论建模

3.1 径向相移不均匀引入的移相误差

为评估 PZT 相移中被测件径向相移不均匀引 入误差的大小,现以凹面球面镜的点衍射检测光路 为研究对象建立分析模型。如图 2 所示,设被测件 口径为 D,顶点曲率半径为 R,由 PZT 带动被测件 移动一小的距离 s,则反射光束的汇聚点由初始的 参考镜焦点位置 O 移动至 O'位置。设 P'点为被测 件口径上任意一点,P'点到被测件中心的径向距离 $d_{P'} = \rho \cdot D/2$,其中 ρ 为被测件径向归一化距离, $-1 \leq \rho \leq 1$ 。定义过 P'点的入射光线 OP'与光轴的 夹角为 θ_1 ,反射光线 O'P'与光轴的夹角为 θ ,依据三 角关系有:

图 2 被测件径向相移不均匀引入误差示意图

Fig. 2 Schematic of error caused by radial

phase-shifting nonuniformity of optical element to be tested 过 O 点入射至 P 点并返回至汇聚点 O'的总光

程为

$$OP + PO' = (R - s) + R_{\circ}$$
(2)

过 O 点入射至 P'点并返回至汇聚点 O'的总光 程为

$$\overline{OP'} + \overline{P'O'} = \sqrt{\left[\sqrt{R^2 - (\rho D/2)^2} - s\right]^2 + (\rho D/2)^2} + R \quad (3)$$

则 PZT 带动被测件移动 s 导致被测件边缘点 P'与中心点 P 的光程差为

 $D_{P'P} = (\overline{OP'} + \overline{P'O'}) - (\overline{OP} + \overline{PO'}) = \sqrt{[\sqrt{R^2 - (\rho D/2)^2} - s]^2 + (\rho D/2)^2 - (R - s)},$ (4) $\forall (4) \vec{x} \ m \ b \ \vec{x} \ \textbf{i} \ \textbf{b} \ \textbf{c} \ \textbf{c$

$$dD_{P'P} = \left\{ \frac{2\left[\sqrt{R^2 - (\rho D/2)^2} - s\right] \cdot (-1)}{\sqrt{\left[\sqrt{R^2 - (\rho D/2)^2} - s\right]^2 + (\rho D/2)^2}} + 1 \right\} ds = (1 - \cos \theta_1) ds \,. \tag{5}$$

相移中移动距离 s 一般很小,可近似认为 $\theta \approx \theta_1$ 。因此,(5)式可简化为

$$\mathrm{d}D_{\mathrm{P'P}} = (1 - \cos\theta) \,\mathrm{d}s \approx \left[1 - \sqrt{1 - (\rho D/2R)^2}\right] \mathrm{d}s \,. \tag{6}$$

若 PZT 带动被测件间隔 $\pi/2$ 相位作相移,第 *i* 步相移引入的相位 $\delta_i = (i-1)\pi/2$,则第 *i* 步相对初始相 位因径向相移不均匀引入的移相误差为

$$\Delta\phi_{P_i} = \left\{1 - \sqrt{1 - \left[\rho D / (2R)\right]^2}\right\} \cdot \delta_i = \left\{1 - \sqrt{1 - \left[\rho D / (2R)\right]^2}\right\} \cdot (i - 1)\pi/2, \tag{7}$$

由(7)式可知,在 δ_i 确定、被测件参数 D 和 R 已知的情况下,因 PZT 相移而在干涉场中任意点(x,y) 上引入的移相误差 $\Delta \phi_{Pi}(x,y)$ 仅与该点相对被测 件中心的径向归一化距离 $\rho(x,y)$ 有关。

考虑到实际干涉光路的往返,PZT 相移一步实

际所需移动相位量为引入参考相位的一半,即 $\pi/4$ (对应 PZT 移动量 s 为 $\lambda/8$),第 i 步相移在被测相 位上实际引入的误差为 $\Delta \phi_{Pi}/2$ 。图 3 为相移一步 ($s=\lambda/8$),R/D 分别为 0.65、1.5、3.3、7.1 和 10.7 时 因径向相移不均匀引入的移相误差随径向归一化距 离 ρ 的变化关系曲线。从图 3 可以看出:相移一步, 引入的移相误差值随离被测件中心的径向归一化距 离 ρ 的增大而增大;被测件 R/D 值越大,在同样相 移量情况下,同一径向位置处因相移不均匀引入的 移相误差越小。

图 3 相移一步引入的移相误差随被测件径向归一化 距离的变化关系

3.2 最终引入的面形检测误差

因被测件作相移时引入的移相误差将影响系统 最终的面形检测结果,这里将该不均匀移相误差的 影响引入到实际相移干涉测量模型中进行分析。其 基本分析思路^[13]是:分别建立无误差和有误差影响 下的干涉图像光强分布模型,用指定36项Zernike 多项式系数拟合出来的波面作为理想待测面形,在 此基础上利用 Matlab 仿真一组无误差的理想干涉 条纹图和一组被测件径向相移不均匀误差影响下的 干涉条纹图,用几种多步相移算法分别进行相位提 取,并经相位解包及 Zernike 多项式拟合后复原出 待测相位。若无误差影响下提取得到的理想相位值 为 φ ,有误差影响下提取得到的实际待测相位为 φ' , He-Ne 激光器波长 $\lambda = 632.8$ nm,则由该不均匀移 相误差引起的面形检测误差为

$$\Delta W = (\varphi' - \varphi) \cdot \lambda / (2\pi) \quad . \tag{8}$$

依据时域相移干涉测量原理,理想情况下 CCD 采集的第 *i* 幅相移干涉图像的光强分布可以表示为

$$I_{i}(x,y) = I_{0}(x,y)\{1 + V(x,y)\cos[\varphi(x,y) + \delta_{i}]\},$$
(9)

式中(x, y)为干涉场中任意点; $I_{0}(x, y)$ 表示平均 (背景)光强;V(x, y)表示条纹对比度; $\varphi(x, y)$ 表示 待提取相位; δ_{i} 为由第i步相移引入的参考相位, i=1,2,...,M,M为正整数,依据 PZT 相移方向的 不同,常取 $\delta_{i} = -(i-1)\pi/2$ (PZT 后移)或 $\delta_{i} =$ $(i-1)\pi/2$ (PZT 前移)。

结合(7)式可知,在被测件径向相移不均匀误差 影响下,第*i*步相移对应的干涉图像的实际光强分 布为

$$I_{i}'(x,y) = I_{0}(x,y)\{1 + V(x,y)\cos[\varphi(x,y) + \Delta\phi_{Pi}(x,y) + \delta_{i}]\}$$

= $I_{0}(x,y)\{1 + V(x,y)\cos\{\varphi(x,y) + \{1 - \sqrt{1^{2} - \left[\frac{\rho(x,y)D}{2R}\right]^{2}}\} \cdot \delta_{i} + \delta_{i}\}\},$ (10)

由(10)式可知,相移量 δ_i 不同,引入的移相误 差 $\Delta \phi_{Pi}(x,y)$ 的值不同,采集的干涉光强 $I_i'(x,y)$ 也不同。 $\Delta \phi_{Pi}(x,y)$ 的引入相当于增加了一个与 δ_i 相关的非线性移相误差。

4 误差分析及校正

R/D 取定值, 仿真考虑有无 Δφ_{Pi}(x, y)误差

 $\Delta \phi_{Pi}(x)$ 时的 13 帧干涉图像,比较用不同算法进行相位提取时被测件径向相移不均匀引入的面形 检测误差。图 4 为 R/D=3.3 时各算法因被测件 径向相移不均匀引入的面形检测误差比较曲线, 表 1 列出了 R/D 分别取 0.65、1.5、3.3、7.1 和 10.7 时仿真计算的各算法引入的面形检测误差的 PV 值。

表 1 不同 R/D 值及算法下径向相移不均匀引入误差的	PV (值
------------------------------	------	---

Table 1 $\,$ PV values of figure errors caused by radial phase-shifting nonuniformity with different R/D values and algorithms

R/D	PV value of figure error /nm							
	5 A	5B	6 A	6B	7A	7B	13A	13B
0.65	61.2908	58.2582	72.6365	71.6364	85.8930	85.6941	171.3445	171.3443
1.5	9.1342	9.0481	11.3065	11.3097	13.5714	13.5714	27.1428	27.1428
3.3	1.8283	1.8264	2.2830	2.2830	2.7396	2.7396	5.4793	5.4793
7.1	0.3928	0.3928	0.4910	0.4910	0.5892	0.5892	1.1783	1.1783
10.7	0.1728	0.1728	0.2160	0.2160	0.2592	0.2592	0.5185	0.5185

比较图 4 中各曲线可知: R/D 一定的情况下, 同步数的 A 类和 B 类相移算法引入的面形检测误差基本相同, 且步数越多的算法引入的误差越大; 相移中产生的该项误差是一个非周期函数, 与条纹频率无关, 只与到被测件中心的径向距离有关, 误差值随着径向距离的增大而增大, 在边缘处取极大值。

比较表1中不同 *R*/*D*下各算法因相移不均匀 引入误差的 PV 值可知,*R*/*D* 越大,同一算法引入 的误差值越小,当 *R*/*D* 达到 10.7 以上时,对于5~ 13 步算法,因相移不均匀引入的误差均已达到纳 米以下量级,故对纳米以上精度的检测,该项误差 可忽略。但对于数值孔径达到 0.3 (即 *R*/*D* ≥ 1.67)的被测件来说,5 步算法引入的误差已超过 7.2559 nm,13 步 算 法 引 入 的 误 差 已 达 到 21.7606 nm,若要达到纳米以下量级的检测精度 需求,该项误差的影响不可忽略,还需探讨误差校 正方法。

从图 4 可以看出,被测件径向相移不均匀引入 误差的分布为类抛物线(面)形式。对该曲线进行最 小二乘法拟合发现,用二次多项式拟合的曲线已与 原曲线基本重合,且数值基本集中于 ρ^2 项;若用更 多项数的多项式进行拟合, ρ 的偶数项系数也远大 于奇数项系数。可见,对于已定的相移算法,可将不 同 R/D下的误差分布简化表述成多项式:

$$\Delta W(x,y) = a_1 \rho^2(x,y) + a_2 \rho^4(x,y) + a_3 \rho^6(x,y) + \cdots , \qquad (11)$$

式中 a_1 、 a_2 、 a_3 为对应多项式的系数, ρ 为径向归一 化距离。依据上述误差分布曲线特性,提出一种基 于误差预估计的多项式误差校正方法,即在R/D及 相移算法步数一定的情况下,通过仿真得到 $\Delta W(x,y)$ 的分布,再利用最小二乘法求解如(11)式 所示多项式的各系数,得到误差校正多项式。从复 原面形中减去由该误差校正多项式计算出的 $\Delta W(x,y)$ 的值,即可校正因被测件径向相移不均匀 引入的误差。

因被测件径向相移不均匀引入的误差基本集中 于二次项(即 ρ^2)上,进行二次多项式误差校正应已 具有极高的校正精度。当R/D分别取 0.65、1.5 和 3.3(也即数值孔径为 0.77、0.33 和 0.15)时,经二次 多项式误差校正后,计算得各相移算法下对应的残 余误差 PV 值如表 2 所示。比较表 1 和表 2 中对应 数据可以看出,二次多项式校正可极大地减小径向 相移不均匀引入的误差,且R/D越小,校正的效果 越好。以13 步相移算法为例,当R/D=0.65 时,校 正后引入的误差已由原来的 171.3443 nm 减小至 12.4888 nm,降低了一个数量级;当R/D=1.5 时, 误差由原来的27.1428 nm减小到了 0.2589 nm,已 降至纳米以下量级。

表 2 经二次多项式校正后的残余误差 PV 值	
-------------------------	--

Table 2 PV values of residual errors after quadratic polynomial correction

R/D	PV value of residual error /nm							
	5A	5B	6 A	6B	7 A	7B	13A	13B
0.65	9.1145	3.6763	6.3819	4.9880	6.4465	6.2702	12.4890	12.4888
1.5	0.1842	0.0872	0.1051	0.1081	0.1295	0.1295	0.2589	0.2589
3.3	0.0067	0.0034	0.0043	0.0043	0.0051	0.0051	0.0103	0.0103

目前成型的相移点衍射干涉仪^[1]的被测数值孔 径一般不超过 0.3 (即 *R*/*D*≥1.67)。如图 5 所示, 对于 *NA*≪0.3 的被测件来说,经二次多项式误差校

(a) 5A 和 5B; (b) 6A 和 6B; (c) 7A 和 7B; (d) 13A 和 13B

Fig. 5 Residual error distribution after quadratic polynomial correction of different algorithms when R/D=1.67. (a) 5A and 5B; (b) 6A and 6B; (c) 7A and 7B; (d) 13A and 13B

需要进一步指出是,研究所述的被测件径向相 移不均匀引入误差分析及校正方法不仅适用于点衍 射干涉测量系统,也适用于用被测件作相移的干涉 测量系统。此外,考虑到各类干涉仪面形检测中直 接复原得到的面形数据还需经过 Zernike 多项式拟 合并消除平移、倾斜、离焦项(前 4 项)才得到真实的 面形检测结果。比较 Zernike 多项式和所提误差校 正多项式的形式可知,被测件面形检测结果经 Zernike 多项式拟合消离焦项(ρ^2 项)后已等同于对 被测件径向相移不均匀引入的误差进行了二次多项 式校正。因此,对于 $NA \leq 0.3$ 的被测件来说,消离 焦后被测件径向相移不均对测量的影响已基本可以 忽略。对于 NA > 0.3 的被测件来说,若要进一步减 小该误差的影响,达到 PV 误差在纳米以下的检测 精度要求,可考虑对(11)式中的两项或更多项进行 校正。

正后,各算法下引入的残余误差的 PV 值均在

0.1655 nm以下,均方根值均在 0.0393 nm 以下,完

全可满足纳米以下检测精度需求。

5 结 论

构建了被测件径向相移不均匀引入误差的分析 模型,以A类和B类的5、6、7和13步相移算法为 例,系统分析比较了不同相移算法下被测件径向相 移不均匀对最终面形检测结果的影响,并进一步探 讨了该误差的校正问题,得出如下结论:

1)被测件径向相移不均匀相当于在移相时增加 了一个非线性移相误差,被测件的 *R/D* 值越大,引 入的移相误差越小,该移相误差随到被测件中心的 径向归一化距离ρ的增大而增大,呈类抛物面分布。

2)同步数的 A 类和 B 类相移算法因被测件径

向相移不均匀引入的面形检测误差基本相同,步数 越多,引入的误差越大,该误差同样随到被测件中心 的径向距离ρ的增大而增大,呈类抛物面分布。

3)被测件径向相移不均匀引入的面形检测误差 经二次多项式(ρ^2 项)校正后即可获得极高的精度, 当被测件的 $NA \leq 0.3$ (即 $R/D \geq 1.67$)时,校正后的 残余误差 PV 值已在纳米量级以下。

 4)被测件面形检测结果经 Zernike 多项式拟合 消离焦项(即 ρ² 项)后,已等同于对被测件径向相移 不均匀引人的误差进行了二次多项式校正。

本研究给出了详细误差分析过程及不同相移算 法下被测件径向相移不均引入误差的系列仿真比较 数据,研究结果可为该项误差的评估及校正提供有 用参考。依据误差分布曲线特性,提出了一种基于 误差预估计的误差校正方法,给出了理论分析结果。 因目前构建的点衍射实验系统中被测件 *R/D* 值已 达到 10,被测件径向相移不均匀所引入的面形检测 误差 PV 值本身就在纳米量级以下,不便于对所提 二次多项式校正方法进行实验论证,相关实验论证 将在改进实验条件后另外进行探讨。

参考文献

- [1] Ota K, Yamamoto T, Fukuda Y, et al. Advanced point diffraction interferometer for EUV aspherical mirrors[C]. SPIE, 2001, 4343: 543-550.
- [2] Otaki K, Ota K, Nishiyama I, et al. Development of the point diffraction interferometer for extreme ultraviolet lithography: design, fabrication, and evaluation[J]. Journal of Vacuum Science & Technology B, 2002, 20 (6): 2449-2458.
- [3] Wang D D, Yang Y Y, Chen C, et al. Point diffraction interferometer with adjustable fringe contrast for testing spherical surfaces [J]. Applied Optics, 2011, 50(16): 2342-2348.
- [4] Gao F, Jiang Z D, Zhao Z X, et al. Measurement of aspheric surface combining point diffraction interferometry and annular subaperture stitching[J]. Optical Engineering, 2015, 54(1): 014102.
- [5] Huang L, Gao Z S, Yang Z M, et al. Lensless imaging method for pinhole type point diffraction interferometer[J]. Acta Optica Sinica, 2017, 37(3):

0312002.

黄磊,高志山,杨忠明,等.针孔式点衍射干涉仪的 无镜成像方法 [J].光学学报,2017,37(3): 0312002.

- [6] Otaki K, Zhu Y S, Ishii M, et al. Rigorous wavefront analysis of the visible-light point diffraction interferometer for EUVL [C]. SPIE, 2004, 5193: 182-190.
- [7] Chen C, Yang Y Y, Wang D D, et al. Analysis of point-diffraction wavefront error based on finite difference time domain method [J]. Chinese Journal of Lasers, 2011, 38(9): 0908003.
 陈琛,杨甬英,王道档,等.基于时域有限差分方法的点衍射波前误差分析[J].中国激光, 2011, 38 (9): 0908003.
- [8] Gao F, Jiang Z D, Li B. Analysis of diffraction wavefront error caused by alignment error of pinhole
 [J]. Acta Optica Sinica, 2014, 34(8): 0812004.
 高芬,蒋庄德,李兵.不同对准误差下的小孔衍射波
 面误差分析[J].光学学报, 2014, 34(8): 0812004.
- [9] Creath K, Hariharan P. Phase-shifting errors in interferometric tests with high-numerical-aperture reference surfaces[J]. Applied Optics, 1994, 33(1): 24-25.
- [10] Moore R C, Slaymaker F H. Direct measurement of phase in a spherical-wave Fizeau interferometer [J]. Applied Optics, 1980, 19(13): 2196-2200.
- [11] Wang S W, Cheng L, Cheng J B, et al. Phase-shifting errors in a spherical-wave Fizeau interferometer[J]. Acta Photonica Sinica, 1996, 25 (10): 883-888.
 黄深旺,陈磊,陈进榜,等. 斐索型球面干涉仪移相

寅休吐,陈福,陈近傍,寺. 支系望环面上砂仪移相 误差的探讨[J]. 光子学报, 1996, 25(10): 883-888.

- [12] Schmit J, Creath K. Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry [J]. Applied Optics, 1995, 34 (19): 3610-3619.
- [13] Gao F, Jiang Z D, Li B, et al. Multi-step phaseshifting algorithm based on extended averaging technique and its error suppression characteristics comparison[J]. Acta Photonica Sinica, 2014, 43(4): 0426001.

高芬,蒋庄德,李兵,等.基于扩展平均的多步相移 算法及误差抑制特性比较[J].光子学报,2014,43 (4):0426001.